LDS-1064

Ultra-compact narrow-linewidth laser system at 1064 nm

Time-Base

Bahnstr.29A 42781 Haan-Gruiten, Germany www.time-base.de

General description.

The **LDS-1064** is an ultra-compact turn-key system based on a 1064 nm laser, frequency stabilized to a high-finesse ULE optical resonator using the Pound-Drever -Hall technique. The use of a fast fiber-integrated AOM allows fast frequency corrections of the laser thus enabling tight and stable frequency locking of <u>almost any commercial single-frequency laser</u>. The laser can be placed externally or integrated inside the housing. Currently the system is designed for integration of the 1064 nm RIO – Orion laser module (Luna Innovation/Rio), or the Koheras BASIK single-frequency fiber laser (NKT Photonics) in the range of 1030 - 1120 nm.

LDS-1064 Layout

LDS-1 main components

Optical unit:

 High-finesse (< 120 000) ULE optical resonator with a vibration reduced shape. Length 76 mm, operation at zero CTE.

laser power)

- Aluminum vacuum chamber with a 2 l/s ion getter pump. Vacuum better 6x10⁻⁸ mbar.
- Miniature vacuum pump controller with an additional Blue-tooth (smartphone) interface
- In-vacuum heat shields for the resonator
- Active temperature stabilization of the ULE resonator at the temperature of zero CTE using TEC elements. Long-term temperature stability approx. 1 mK
- Fiber AOM with a PM fiber splitter at the output (10% for stabilization, 90% for experimentation)
- Low-RAM bulk electro-optical phase modulator for Pound-Drever-Hall signal generation
- Compact resonator incoupling and PDH setup
- Fast reflection amplified InGaAs photodetector
- Amplified photodetector for transmission signal
- CCD camera at the output of the resonator to monitor the resonator modes
- TFT display to control the resonator mode (TEM00 mode is optimized).

Controller:

- Precision RF AOM driver with a wide bandwidth FM for laser frequency stabilization
- DDS-based RF driver for EOM Pound-Drever-Hall electronics with a digital phase adjustment
- Ultra-low noise analog PID controller with fast and slow loops for laser frequency stabilization
- Microcontroller-based auto-lock frequency stabilization system including digital correction of the laser temperature (long-term frequency correction)
- Computer control

Front view

Built-in precision analog Lock-Box

Rear view

Integration of RIO-Orion and Koheras BASIK lasers

Specifications:

Dimensions (mm)	350 x 300 x 140 (L x W x H)
Weight (without external power supply)	13.5 kg
Power consumption	20 W
Power supply (external)	+24V, ±5V
Laser linewidth	< 10 Hz (without vibration isolation)
Output power (implemented 1064 nm RIO ORION laser)	> 20 mW

Typical frequency stability measurements by analyzing the heterodyne beat signal between two similar LDS-1064 systems (without vibration isolation):

